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The optimum shape problems considered in this part are for those profiles of a 
two-dimensional flexible plate in time-harmonic motion that will minimize the 
energy loss under the condition of fixed thrust and possibly also under other 
isoperimetric constraints. First, the optimum movement of a rigid plate is 
completely determined; it is necessary first to reduce the original singular 
quadratic form representing the energy loss to a regular one of a lower order, 
which is then tractable by usual varhtional methods. A favourable range of the 
reduced frequency is found in which the thrust contribution coming from the 
leading-edge suction is as small as possible under the prescribed conditions, 
outside of which this contribution becomes so large as to be hard to realize in 
practice without stalling. This optimum solution is compared with the recent 
theory of Lighthill (1970) ; these independently arrived-at conclusions are 
found to be virtually in agreement. 

The present theory is further applied to predict the movement of a porpoise 
tail of large aspect-ratio and is found in satisfactory agreement with the experi- 
mental measurements. A qualitative discussion of the wing movement in 
flapping flight of birds is also given on the basis of optimum efficiency. 

The optimum shape of a flexible plate is analysed for the most general case 
of infinite degrees of freedom. It is shown that the solution can be determined to 
a certain extent, but the exact shape is not always uniquely determinate. 

1. Introduction 
One of the most inspiring questions concerning the phenomena of aquatie 

animal propulsion and of flapping flights of birds and insects is invariably 
connected with the highest possible hydrodynamic efficiency. This problem 
has been brought up from time to time by various observers who have noted the 
impressive capabilitity of these animals in generating fast movements at  low 
energy cost. According to the first principle of energy balance or momentum 
consideration, as has been explained in part 1 of this paper (Wu 1971)) much 
can already be said about the desirable shapes of body movement: that at large 
Reynolds numbers, a thin two-dimensional plate gains thrust by sending a 
transverse wave from head to tail, with amplitude slightly increasing towards 
the rear, thereby achieving a forward swimming velocity somewhat less than 
the phase velocity of the body wave form. As for the tail of large aspect-ratio 
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of some high-performance fish, the tail should move nearly tangentially to the 
path traversed in the space by the body wave form. These basic features have 
been elegantly elucidated, with perhaps more physical reasoning, in an excellent 
review by Lighthill (1969). However, it would still be of great interest to resolve 
a quantitative determination of the optimum shape under some appropriate 
constraints. 

The problem of the optimum shape is interesting in its own right from the 
mathematical point of view, since the effective methods of solution do not 
seem to fall into the known categories of the calculus of variation. The special 
case of a two-dimensional waving plate in harmonic motion has been treated 
by Wang (1966), who adopted a discretized Fourier representation of the body 
motion, and found that his solutions exist only for a set of eigenvalues. How- 
ever, it is found in the present study that this optimum shape problem is 
basically not an eigenvalue problem, and therefore merits a new discussion. 
On physical grounds, it would be indeed difficult to see the significance of the 
idea that the shape function can have eigensolutions. 

In this part we shall consider the optimum shape problem only for the case 
of two-dimensional flexible plate, of negligible thickness, in harmonic motion. 
(Some three-dimensional problems will be treated in part 3 of this paper.) 
The two-dimensional theory is reckoned to have utility in problems of lifting 
surfitces of large aspect-ratio, such as the tails of some cetaceans and high- 
performance game fish (the lunate tails : swordfish, tuna, albacore, porpoises, 
etc.), and even the wings of most birds and some insects. The optimum shape 
problem is concerned with those profiles or movements that will minimize the 
energy loss under the condition of fixed thrust (required to overcome the viscous 
drag), and possibly also under other isoperimetric constraints. First, the optimum 
movement of a rigid plate is determined by reducing the original singular 
problem to a regular one of a lower rank. This optimum solution is found to 
depend on two variables: one being the reduced frequency and the other a 
‘ proportional-loading parameter ’, defined as the prescribed thrust coefficient 
divided by the dimensionless heaving amplitude squared. For given loading 
parameter, a favourable range of the reduced frequency is found in which the 
thrust contribution coming from the leading edge suction is as small as possible 
under the prescribed conditions. This consideration seems to provide the 
optimum range of the reduced frequency utilized in practice. 

These theoretical results are further applied to  predict the movement of a 
porpoise tail, and comparisons made with the experimental inrestigation of 
Lang & Daybell (1 963). A s  a related problem of interest, the optimum movement 
of a flapping wing of some birds or flatfish is discussed qualitatively. 

The general problem of optimum shape of a flexible surface having an infinite 
degree of freedom is finally analysed and discussed. It is found that the solution 
can be determined to a certain extent, and, with the additional degrees of freedom, 
the optimum efficiency can be further improved from the rigid-plate value, but 
the exact shape is not uniquely determinate. 
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2. Statement of the optimum shape problem 
As a starting point, the following basic results are reproduced from part 1 

(Wu 1971). The class of motion treated here is that of a two-dimensional flexible 
plate, immersed parallel to a uniform stream of velocity U in the x-direction, 
and performing a harmonic transverse motion 

y = h(x,t) = h,(x) exp ( j w t )  ( -  1 < x < I), (1) 

which is assumed to be continuous in - 1 < x < 1 and to possess tt Fourier 
expansion 

N 

h(z,t) = * P o +  C P, cos n8 (x = cos8, 0 < 8 < n), 
n= 1 

with p,=:J:h(x,t)cosnOdH ( n = 0 ,  l . . . N < c o ) .  

This motion generates at  the plate a transverse flow velocity, 

which can also be expanded in a Fourier series, 
N 

It= I 
V(x ,  t )  = @, + C b, cos n6’ (z = cos 8), (4) 

with b , = ~ ~ n V ( s , t ) c o s n 8 d 6  (n=O,  l . . .N<co) .  

In (2)-(4) and in the sequel, the harmonic time factor exp ( j w t )  of h, V ,  P,’s and 
b,’s is always taken as understood. The reduced frequency IT is referred to half- 
chord I ,  which is being taken as the unit length, OT 

The time averages of thrust F ,  energy loss E ,  and power required P can be put 
in the coefficient form, 

CE E E/($nPU3z) = B ( a ) ( b , + b , ) ( b ~ $ b : ) / U 2 ,  ( 6 )  

C, = F/($mpU3Z) = R e { - ( j ~ / U ) ( b , + b , ) C ( P ~ - P ~ ) ~ ( ~ ) + P ~ I } ,  (7) 

c, ~ / ( $ ~ p u u 2 ~ )  = Cp-CE, (8) 

where the symbols with * stand for their complex conjugates, @(a) denotes 
Theodorsen’s function 

n o  

0- = o l / U .  (5) 

@(0-) = K ,  (jo)]lKo (ja) + K ,  (jv)] = 9 +jg, 
B(a) = 9- (P+ P), 

( 9 4  

(9b) 
K ,  being the modified Bessel function of the second kind, 9 and 9 being the 
real and imaginary parts of 0. 

The general optimum shape problem can be stated as follows: Within the 
class of shape function h as specified above, find the optimum one which will 
minimize C, under the condition of fixed thrust  coefficient, say 

the reduced frequency being regarded as a fixed parameter. 
Q, = CT,O ’ 0, (10) 
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As has been pointed out in part 1 ,  C, >, 0 for a > 0 with any admissible h, 
consequently the extremal solution of C, will not be negative. Here, CT rather 
than C, is chosen to be a fixed positive quantity for the sole reason that the 
result will always give a meaningful hydrodynamic efficiency : 

7 = c77/cp = cT,O/cp = cT,O/(cY’,O + cE). (11) 

If C, is fixed instead, the solution of C, may become negative. Aside from this 
point, there is no fundamental difference whether C, or C, is fixed. 

It is of interest to  note that only the fkst two Fourier coefficients of h and of V 
appear in the expressions for CE, C, and C,. Since h and V a,re related by a 
differential equation (3), b, can be expressed in terms of Pn’s upon substituting 
( 2 ) ,  (4) in (3).  Conversely, if V is fist prescribed by a set of b,’s, / I n  ca.n be 
evaluated in terms of b, upon integration of (3),  thus introducing a comple- 
mentary solution proportional to exp (-jox). In either case, b, and b, will 
depend on all the Pn’s which are admitted to h, or / I o  and P1 will depend on all 
the b,’s admitted to V .  If the number N of the terms in ( 2 ) ,  (4), is taken to be 
infinite, so that h and V each will define a vector space of infinite dimensions, 
the problem can be recast somewhat as follows. Define the scalar product of 
two functions h(z) and y(x) over - 1 Q x 6 1 by 

( 7 b g )  = 2 p ( x ) g * ( z ) d O  - (x = COSO), 
= o  

then (6), (7) may be written 

CE = U-”(CT)(V,l+x)(V*, 1 + 2 ) ,  (13) 

C, = Re (( -jcr/U) ( V ,  1 +x) [(h*, 1)  @(a) + (h*, x) ( 1  - @(o))]). (14) 

A striking feature here is that there are only three different scalar products 
involving h and V that can be subjected to variation, from which the optimum 
h is to be determined. 

The number of the Fourier coefficients, or equivalently, the number of scalar 
products can be increased by a few if the waving plate propels itself without 
external agencies whilst the recoil conditions are imposed on the plate’s being 
free from lateral and angular recoil. These recoil conditions require that the 
hydrodynamic lift L and moment M must be equal and opposite to the time-rate 
of change of the lateral and angular momentum of the body (see (40), (41), (56) 
of part l),  or 

1 

(b,+b,)@(cr)+frja(b,-b,) = +“s m(z)h(x)dx,  115) 
nP -1 

(b,+b,)@(a)-(b,+b,)-$ja(b,-b,) = -- 2 ~ ~ j ~ l x m ( x ) h ( x ) d x ,  (16) 

where m(x) is the plate mass per unit distance in x. Conditions (15), (16) are 
additional isoperimetric conditions to be satisfied together with ( 10) in extre- 
mizing C,. These two conditions can, however, be disregarded or accounted for 
separately, when this two-dimensional theory is applied to evaluate the propul- 
sion of a lifting surface (of large aspect-ratio) which is only a part of the self- 
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propelling body, such as the tail of certain cetaceans and Lunate tails, or the 
wings of birds, since the question of recoil requires a consideration of the entire 
body. 

- 

3. Optimum movement of a rigid-plate wing 

following simple case : 
The basic nature of this optimum shape problem can be best seen from the 

W , t )  = ~ ~ 5 0 + ~ c 1 + j c 2 ~ ~ 1 ~ ~ P ~ j ~ ~ ~  (1x1 G 11, ( 1 7 4  

so that P o  = eoexp ($4 P1 = (el +j62) exp ($4, (17b) 

where c,, el, c2 are real. The above h represents a rigid plate performing a heaving 
with amplitude ice and a pitching about x = 0 with amplitude 151+j621 at a 
phase angle tan-l (t2/t1) leading the heaving motion. This special case, though 
about the simplest in form for the general optimum problem, still embraces a 
considerable interest for its result may cast light on the tail motion of some 
high-performance fish and cetacean, as well as on the flapping wings of birds in 
flight. 

Before we proceed further, we list here two fundamental cases: 
(i) Heaving only, so that g1 = c2 = 0 and only 6, =t= 0. Then, by (2)-(4), 

b, = Uja&exp(jwt), b, = 0. (18)  

C E  = a2B(v)  5:, cp = a2F((r) [:, CT = a2(F2 + g2) 6;. (19 )  

(20) 

The corresponding CT, C,, C, are 

The hydrodynamic efficiency of heaving propulsion, 

r l leav (a) = cT/cP = (F2 + s2)/F, 
is seen to depend on a only, decreasing monotonically from r h ( 0 )  = 1 to 
rh(m) = 0-5, as shown in figure 1. This general trend of r h  is readily verified 
from the known asymptotic behaviour of 9 and 9 that, for a < 1 ,  

To- 
F(a) - 1---a2 +O(a310g2a) (yl = 1.781 ...), (21a) 

2 
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In this pure-pitching mode, both C, and C, are positive definite for 0- > 0. 
But T,,(a) = 0 has one real root, 

7 

0.4 

0.2 

! Z ' 2 z ( ~ o )  = 0 for go = 1.781, (26) 

and T,, 2 0 according as CT 2 (ro (see figure 2 for its numerical value). When 
CT > 0, we may define the hydrodynamic efficiency 

(27)  

- 
- 

- 

I I I 

which is found to increase monotonically from q p ( r 0 )  = 0 to .yp(co) = 0.5, as 
shown in figure 1. We further note that in either case (i) or (ii), power must be 

U 

FIGURE 1. Hydrodynamic efficiency of heaving propulsion, qh(cr), and of pitching 
propulsion, ~ ~ ( o ) ,  the latter being defined for the reduced frequency u > uo = 1.781. 

supplied to maintain the motion, consequently it is impossible to extract energy 
from the fluid in so far as either (i) or (ii) is concerned separately. The main 
objective of optimization is then to determine if the efficiency can be greatly 
improved when both heaving and pitching modes are admitted. 

Returning to the combined motion, the value of ( b ,  + b,) corresponding to  h 
of (17) is, by (3) and (a), 

b, + b, = Uexp ( J - 4  G J - 4 0  + (2 +ja) (t-1 +jt,)I. (28) 

We note here that b,+b, = 0 when 

g1 = El = -v2(CT2+4)--160, 6 - &  - 2 - = -2u(0-2+4)-1~o. (29) 

At the same time, C,, C, and CT all vanish with (b,+ b,), according to  (6)-(8). 
This particular set of values (go, &, 5,) will be seen to play a significant role in the 
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optimum solution. Upon substituting (17), (28) in (6) and (7), C, and C, can be 
written 

where 5 = (to, El, t2) is a vector in a 3-dimensional vector space, (5, <) denotes 
the inner product of 5 and <, or togo + tlCl + E2cz, Q and P are 3 x 3 symmetric 
matrices with elements, 

C E  = B(g)  (5, QE), Cp = ~ ( 5 ,  P5) (30) 

I Q 1 1 =  Q1z = gz, 

Plz = 9 + +u, 

Q13 = 2 ~ 9  

P13 = 9 - g9, 
Qzz = Q33 = 4 + g2, Q23 = 0; 

p,, = ~ 9 ,  Pzz = P33 = g( 1 - 9) - 2 9 ,  (31) 
Pz3 = 0.  

QZ2 and PZ2 in (31) are identical to (25). It can be shown from the properties of 
9 and 9 that P is non-singular for g > 0 since none of the three eigenvalues of 
P vanishes for (r > 0. However, Q has the eigenvalues 0,  (@+ 4), (20-2+ 4), and 
hence Q is singular in the third order, but non-singular in the second order. 

U 

FIGURE 2. Coefficient T,,(u) associated with pitching of a rigid plate andg,, (a) 
pertaining t o  a flexible plate. 

The optimum problem at hand is to minimize the quadratic form C, of (30) 
under the constraint (lo),  whereas the recoil conditions (15), (16) are relaxed for 
the reason already stated. This constrained optimization is equivalent to 
minimizing a new function, 

A’ being a Lagrange multiplier. If one sets all the derivatives of C i  with respect 
to to, tl, tz to zero, one finds that the secular equation, 

c;, = cE-A’(cT-cT,o) = (1 +h‘)C,-A’Cp+h’cT,o, 

(Q -pP( = 0 has three roots: pl = 0,  pz = 0, p3 = Qzz/Pzz, 

(32) 

(33) 
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where p is related to the old multiplier A' (the actual relationship being im- 
material). The first two eigenvalues pl, p2, being a double root of zero, yield the 
same eigenvector (c0, Cl, c2) with &, c2 given by (29). But, as noted before, 
bo+bl  = 0 when t1 = &, g2 = &, thereby making C,, C, and C, all vanish. 
Clearly this eigenvector is not the solution since condition (10) can not be 
satisfied. (The generalized eigenvector of rank 2 in the sense 0 2 5  = 0, QC + 0 
for the multiple root p 2  does not exist, nor does any generalized eigenvector of 
higher ranks.) The third eigenvalue p3 gives the eigenvector having go = 0; 
the resulting C, therefore becomes proportional to CT, implying that this last 
eigenvector is a stationary solution. This also shows that the foregoing method 
based on the spectral theory, as was used by Wang (1966), does not work. 

The correct approach is found by noting that since Q is singular, but non- 
singular in the second order, the quadratic form C, can always be reduced to a 
non-singular form in two variables. In  fact, in terms of the new variables, 

c0 = c0/(4 + r2), el = El - 11, C2 = t2 - C 2 ,  (34) 

cE = B ( 0 - ) & 2 2 ( c ; + c z ) ,  (35) 

A1 = p 1 2 & 2 2 - & 1 2 P 2 2 ,  A2 = P13&33-&13p33- (37) 

with El, E2 given by (29), C, and C, in (30) reduce to 

CP = 4P22 (c; + 6;) + 2A 1 c o  el + 2A 2 c o  c21, (36) 

Now it is clear that, while C, spans the whole vector space (c0, el, c2), C, spans 
only its subspace (el, 6). Obviously the surface C, = const. = C,,o > 0 is a 
circular cylinder with its central axis along the co-axis. The quadric Cp = const. 
= Cp,o > 0 is seen to be an oblique hyperboloid of one sheet, since its intersection 
with the plane c0 = const. is a circle centred at  ( -Alco/F'22, -A2co/Pz2), of 
radius [(A;  + A:) (co/F'22)2 + CP/(0-P2,)]*. The extremal solutions under condition 
(10) are therefore given by the points in the subspace (c1, c2) at which (grad C,) 
is proportional to (grad (7,). This situation is depicted in figure 3 in terms of 
C, and C,. Thus, after setting the derivatives of C& = (C, - h"C,) with respect 
to el and c2 to zero, we obtain 

el = hAleo:,, c 2  = hA2C.o (38) 

where h is a Lagrange multiplier. Upon substituting (38) in (35)-(36), 

Now, application of condition (lo), or Cp-CE = CT,o, results in a quadratic 

( 4 1 4  
equation for A, 

where CT.0 = c;.,o/t;, A2 = A;+ 4, (41 b )  

and T2,(cr) is given by (25). 6T,o will be called the 'proportional-loading para- 
meter'. The multiplier h therefore has two solutions 

Tzz(0-)h2f2crh = 6T,0(4+02)2/A2, 
- 

u2+4 2 "1 = -{ - 1 f (1 +A)*}, A = cT,oT22 (A) . 
0- 

A2 T22 
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A,, A, depend on two parameters: u and cT,,. By virtue of the behaviour 
T,,(a) $ 0  according as a a, = 1.781, it follows that for fixed cT,, > 0, 
A(u, c,,,) increases monotonically from - co to 0 as a moves from u = 0 to u,. 
Consequently, A,, A, will be real (as are required to be physically meaningful) 
if A 3 - 1 ; or, equivalently, for 

The solution u, = aC(cT,,) is shown in figure 4 to lie between uc(0) = 0 and 
a,(co) = a,. For given CT,, > 0, the real optimum solution therefore exists only 

2 aC(CT,,), where R(~, ,C, , , )  = - 1. (43) 

/ 
/ 

h 5 2  

CE=const.= C,, /------t‘ 
\ 
\ 

c,=c,,>o 

FIGURE 3. For c,, fixed, the quadric CT = CT,, > 0 is an off-centred circle which meets 
tangentially the surface CE = CE, at MI and CE = CE, ( > CE, at M,. The points MI 
and M, correspond, respectively, the maximum and minimum hydrodynamic efficiency 
under condition of fixed CT = CT,~. 

for a 2 ac. Within this range, A, is positive, numerically smaller than A,, and 
corresponds to the highest efficiency attainable under condition (lo), 

The lowest efficiency ymfn that can be realized under the same conditions (10) 
is given by the last expression of (44) with A,replaced by A,. For any combination 
of c,, cl, c, different from (38), the efficiency 7 is rmin < 7 < rmax so long as 
C , ,  is kept fixed. 

The following salient features of the solution are noteworthy. 
(i) A t  v = a,, A = - 1, so that A, = A, = -a,/T,,(aC); hence, from (44) and 

(25), it follows that for arbitrary cT,, > 0 

34 
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in virtue of P22(a) > 0 and hl(ac) > 0. This shows that, in the frequency range 
near a,, rmax cannot be very impressive. In  fact, rmax (a,) -+ 0 monotonically as 
t5T,0-+m,sinceinthislimit T22(ac)+T22(a0) = 0, andhenceh,-+co (seefigure4). 

6, 

FIGURE 4. For givcn C T , ~  > 0, the critical cc marks the lower bound of tho reduced 
frequency c, below which no real optimum solution exists. 

However, when cT,o < 1, a, is also small. By making use of the asymptotic 
expansions (21) for 9 and 3, we readily deduce that 

a, N 27rCT,, (1  + cT,o [ ( 2  - ;) log ~ + 2  +o(a:log~a,) ] ) Y 1% 0 “I 
1 ---slog- 1) ) (47) 

a 2 (aaac)b[ 7r+4 

(46) 

4 Yla 
qmax - 2 l---Iog-+ - 

l (  2n Yla 
the last expression being valid for 0 < (a - ac) < 1 .  Note that dq(ac)/,)lda = co; 
thus rmax rises rapidly from rmax(a,) as a increases from a,. 

(ii) Near a = v0 (ao defined by (26)), we deduce from ( 2 6 ) ,  (44), and (22) that 

hl(a) = ic~,o(ai+ 4)2/(a0A2) +o(la- f lol)? 

rmax(4 = [1 + i ~ 2 2 ~ ~ , ~ ~ l ~ ~ , ~ l - 1 + ~ ~ ( ~ - ~ o ( ~  = [1 + + G , o l - l + o ( ( ~ - - o l ) .  (49) 

(48) 

We note that rmax (ao) is already more than twice rmax (ac). 
(iii) For cT,o < 1 and ac < a, A is small, say A = e < 1. Then A, = O(e), 

consequently qmax = 1 - O(E)  for a, < a, indicating that high efficiencies can be 
achieved in the neighbourhood of cT, = CT,o/W = 0. In this operating region the 
amplitude of heaving of course must not vanish (to + 0). In  the limit as cT.,o+ 0, 
A,+ 0, and hence cl, c2 T ,  E ,  P all tend to zero whereas ymax-f 1, corresponding 
to the singular case already mentioned in part 1. 
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(iv) For v 9 1, we deduce from (44), by using expansions ( 2 2 ) ,  that, for 
arbitrary c , ,  > 0, 

-1 - 
rmax [ 1 + 6 % 0  (1 - g)] [ 1 +Q QT.0 (1 - 5 - 3 1  ’ (50)  

which has the bounds 0.5 < qmax < 1. The lower bound corresponds to large 
CT,,, a limit which is reached as the flapping amplitude to-+ 0. This result is in 

accordance with the special case of pure pitching oscillation (see (27) and figure l), 
namely, it can be used to produce thrust only when (T is sufficiently high, at the 
expense of low efficiency. 

The above features are all exhibited in the numerical result of rmax as plotted 
in figure 5 for several values of CT,o. 

The optimum motion of the plate is given by (34), (38), (29) and (42), 

iJ50  = (h1A1-c2)/(a2+4), 62/50 = ( & A 2 - 2 ( ~ ) / ( v ~ + 4 ) -  (51) 

Hence, the amplitude ratio and the phase advance of pitching relative to the 
heaving mode are 

2, (6;+6:)4/6,, = ( a 2 f 4 ) - 1 [ ( h l A l - a 2 ) 2 + ( h l A z - 2 v ) 2 ] ~ .  (52a) 

a, = = tan-l [(&A2- 2a)/(h1A1 - @)I. (52b)  
34-2 
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These results are shown in figures 6 and 7 for several values of cT,o. For u suffi- 
ciently large, say u > 2, curves of different CT,,( < 1) approach to a common 
asymptotic representation: 

ua + 2( 1 - 5cT,0/3) , an - nftan-' zn u2+4 

1 

10-1 

10-2 

10-3 
1 0 - 2  10-1 I 10 

(53) 

0- 

FIGURE 6. The amplitude ratio (pitching/hoaving) Z,(a, GT, ,,). 

In  summary, we first notice the advantage of operating at small values of 
CT, ,,, corresponding to sufficiently large heaving amplitude. A smaller CT, 
renders the optimum solution valid to lower frequencies u, and makes rmax 
greater at  the same u. As u increases from uc, the pitching-heaving amplitude 
ratio 2, fist decreases to a minimum, then increases steadily to a common 
asymptote. Over the same range of IT, the phase difference ap changes very 
rapidly at  first, followed by a much slower variation at higher cr. A rather 
sophisticated control would therefore be necessary if the operating range of u 
is chosen in which faat variations of 2, and ap may take place. It is a remarkable 
result that in the higher range of c, very high efficiencies can be realized with 
an appropriate interplay between the heaving and pitching motions. This effect 
is exhibited in the result with the pitching amplitude as little as only a small 
fraction ( N 0.1 or less) of the heaving motion, provided the phase difference is 
come ctl y observed. 

The foregoing exposition of the optimum solution leaves very little clue as t o  
whether there also exists an optimum range of u (aside from the understanding 
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that (T should be sufficiently greater than a,) for practical operations. A possible 
source for such crucial information lies in the knowledge of the thrust contribu- 
tion coming from the leading-edge suction, as was pointed out by Lighbhill 
(1970)) for the following reason. Although this suction force has been simplified 
to appear mathematically as a singular force acting on a pointed leading edge, 
it can be realized physically only when the thin section's leading edge is suffi- 
ciently rounded. The magnitude of this suction is therefore of utmost importance 
to its being realizable or not in practice. 

270" 

240' 

210' 

180' 

alr 

150' 

120" 

90" 

60" 
1 3 

10-2 10-1 1 10 

U 

FIGURE 7. The phase advance angle an (u, GT, o )  of the pitching mode. 

The leading-edge suction is given by (see part 1, equations (43)) (62)) 

T, = &rp(a0 + a, = (b, + b,) O ( v )  - b,. 

Its  time average in harmonic motions is clearly 

which can be expressed in terms of to, El, g2 for the motion given by (17) by a 
straightforward substitution upon using ( 9 a ) ,  (28)) yielding for the ratio of the 
mean suction thrust coefficient C, = Ts/( tnpU21),  to the prescribed total thrust 

(54) T - 1  s - 8w%a: ,  

121 [ 50  50  

+ (a9-2F)-+PP,,---S t 2  t* . 
155) 
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For the optimum movement, &/to and &,/to in (55) assume the values given by 
(51). The final result is plotted in figure 8 for various proportional-loading 
parameter 6T,o. It is of great interest to note that the ratio Cs/CT has a minimum 
at (T = ( T ~ ( C ~ , ~ )  say, and is relatively small in a short stretch of r . ~  about vm. 
Outside of this range, Cs/CT increases rapidly beyond 1 and becomes so large 
(the complementary thrust delivered by the plate surface is then negative) as 
to be certainly difficult to realize in practice without leading-edge stalling. It is 
also noteworthy that r . ~  = vnx isvery near the corresponding maximum of the ctP(v) 
curve about which aP varies relatively slowly with (T. It is thus convincing that 
the optimum range of operating (T in practice should be somewhere very near 
crm, most likely to be a little greater than cm before C,/C, rises sharply 
so that a slightly improved efficiency can be achieved without risking to cause 
stall. 

Y 

10-2 10-1 1 

r 

FIQTJRE 8. The ratio of the thrust coefficient C, due to leading-edge suction 
to the total thrust coefficient CT. 

The general problem of optimum movement of a rigid plate was investigated 
by Lighthill (1970); this study was known to the author when the present paper 
was written. It is thought to be of interest to discuss these independently 
arrived-at conclusions. Lighthill takes the section's lateral displacement in the 
form 

y = [h - ia(x- b)]  exp (iot) ( - 1 < x < Z), 

where h and a: are real numbers signifying the amplitude of the heaving and 
pitching motions respectively, and x = b, y = 0 is the axis of pitch. Clearly, 
Lighthill's adopting a fixed phase difference of go", while generalizing the axis 
of pitch, is equivalent to adopting a general phase difference between heaving 
and pitching-about-mid-chord-axis. In  fact, this equivalence is completed by 
introducing a reference phase y to (17), and recovering the half-chord length I, 

y = [ $ ? ~ , , + ( t l + i ~ ~ ) x ]  exp [i(ot+y)] ( - 1  < x < I ) .  
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b/l  = -&&,[l([;+ci)-l = -+Zil cos up, 

h/E = -+tot2([!+[:)-* = -+&sin up, 

535 

Then the above two expressions of y are equivalent if 

(57) 

158) 

As a useful measure of the relative magnitudes of pitching and heaving, 
Lighthill (1 969, 1970) introduced a ' proportional-feathering parameter ', 
8 = Ualoh, which is found to be indicative of thrust and efficiency considerations. 
Physically, this parameter provides a measure of the deviation of the plate slope 
from the tangent to the path traversed in the space by the axis of pitch. Since 
this path is sinusoidal, the largest value 01 can assume for positive thrust is the 
maximum slope of the path, 01 = kh, k being the wave-number, which gives 

= (g+t;)* = E0Z,. (59) 

u 

FIGURE 9. The optimum location of pitching axis x = b when the heaving is taken to 
lead the pitching by 90' in phase. The dotted chain line denotes v = a,,, along which the 
leading-edge suction is minimum. 

8 = Uk/w = U/c ,  where c is the wave velocity relative to the plate. Thus, 8 is 
usually less than 1, and 0 = 1 corresponds to  geometrically accurate feathering 
.of the fin. In terms of the present notation, 8 can also be written as 

The advantage of Lighthill's form (56) fist appears in the result that the 
wasted energy in the wake has a sharp minimum when b = 41, or when the 
pitching axis is at  the $-chord point, whereas the rate of working increases 
somewhat for axis positions b distal to that. Consequently, an optimum from 
thrust considerations as well as from efficiency considerations lies somewhere 
between b = +1 and b = 1 (i.e. for the pitching axis to lie between the 2-chord 
point and the trailing edge). 

The present optimization, however, is held under an extra isoperimetric 
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condition (10) for fixed thrust. The corresponding results of the optimum values 
of b/l and 8 for given cT ,,, by using (51) in (57) and (60), are plotted in figures 
9, 10, in which the dotted chain lines correspond t o  CT = gm, along which the 
leading-edge suction is the smallest possible. Along this line, the pitch-axis b 
increases from $1 to $1 whereas the feathering parameter 8 falls off from 1 to  0 
as cT,o increases. These genera1 features are in qualitative agreement with the 

U 

FIGURE 10. Variation of the feathering parameter 8 (definod by ( G O ) )  with the reduced 
frequency (T. The dotted chain line denotes (T = ffm along which thc Icding-edge suction 
is minimum. 

predictions of Lighthill (1970). As a further remark here, we note that the 
point b/l = 4, 8 = 1 is readily seen, by (29), (57) and (BO),  to be equivalent to 

= El, c2 = E2, of which the significance has already been discussed. 
For further comparison of the theory with experiments we proceed to  discuss 

the following specific numerical exa,mple. 

4. Movements of porpoise tail 
Lang & Daybell (1963) reported a series of experiments dealing with the 

swimming performance of a porpoise (of genus Lagenorhyncus obliquidens, or 
the Pacific Whitesided Dolphin) who was trained to swim a.nd glide along an 
almost straight course in a long towing tank. This was perhaps one of the very 
few exhaustive and carefully conducted tests of a live cetacean under a well- 
controlled condition. The following data, which are thought to be useful for a 
qualitative comparison, are cited from Lang & Daybell (1963). 
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The porpoise, 6-7 ft. long, had a total body surface of S = 16.8 ft2, including 
the tail surface area 0.527 ft2. The tail, nearly triangular but slightly crescent 
in shape, had a span of 1.69 ft. and a maximum central chord of 0.625 ft., 
corresponding t o  an aspect-ratio of 5.4. The total drag D was estimated for full 
laminar, full turbulent, and 40% laminar flows at various porpoise speeds 
based on known test data for rigid, smooth ellipsoidal bodies. A particu1a.r run 
selected for the present study was a stretch at  porpoise speed U = 17 ft./sec, 
even though a slight acceleration was also recorded. The drag coefficient 
C, = D/(&pU2S)  equal to 0.0027 based on 40% laminar flow at this speed (or 
the lnmina,r region Reynolds number of 4.2 x lo6) seems to agree fairly well 
with the observed drag derived from the deceleration measurement during glide 
runs, though the data of the latter kind have a considerable scatter. This value 
of C, will be taken as a representative case for comparison. The amplitude of 
tail stroke, as measured from this particular run (run no. 15-22, see figure 11) 
was about 10 in., or 0-83 ft. The tail angles of attack, measured relative to the 
undulating path traversed by the tail base, are also shown in figure 11 as given by 
Lang, who remarked on the considerable difficulty of determining the accuracy 
of the data. As thought to be most likely, the large size of the tail, its great 
vertical movement, and its noticeable changes in angle of attack would all 
suggest that a major part (perhaps more than 50%)  of the total thrust was 
produced by the tail alone, leaving the remainder to be generated by the body 
movement. 

Since the aspect-ratio of the tail is sufficiently large to justify the strip theory, 
we shall adopt this approach, using the local two-dimensional characteristics 
for each strip. Just as a qualitative estimate we shall further simplify the strip 
integration by using its algebraic mean, though this will over-estimate the thrust 
and efficiency. Assuming the total dra.g D is balanced by the tail thrust during 
the cruising period, we find 

CT,o = D/($npU2$S,,i,) = (4/n)(S/Staii)CD = 40.5CD = 0.11, (61) 

where CT stands for the local two-dimensional characteristic. The amplitude of 
tail stroke of 0-83 ft., when referred to an effective rncan half-chord of the tail, 
1 = 0.2 ft. (which is taken to be slightly on the larger side in order to account 
for the missing part of the body contribution to the thrust) gives in dimensionless 
form: t 0 / 2  = (0.83)/(0.2), or co = 8-3, 

and hence 

The corresponding value of re, by (46)) is about a, 21 0.01. The wavelength of 
the track of the tail base is estimated from figure 11 to be about h = 5.5 ft., 
corresponding to the reduced frequency of the tail motion, 

CT,o =z c , / t  T 0 t - - 1.6 x 10-3. (62) 

0 1  2m1 
U h  

g = . - -  - 0*4nr/5*5 = 0.228, 

which is very large compared with wC, but is quite close to rrn for this I ? ~ , ~ .  
Now, suppose this tail movement was performed at  the optimum efficiency. 

Then, the efficiency, the amplitude ratio Z p ,  and the phase advance ap of the 
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pitching mode of the tail are found from figures 6, 7 at the above cT,o and CT 
to be 

7 = 0.99, 2 ,  = ((f+(g)*/(O = 0.104, ap = tan-'(,/& = 263". (64) 

The tail motion, upon taking the real part, is 

h = ~( , coso t+( ( , coswt - (~s inwt ) z  ( -  1 < x < l) ,  

where h and x are both referred to the mean half-chord 1 = 0.2 ft. The tail 
angles of attack relative to the free stream is 

- ah/& = - 602, cos (wt + up) = - 0.862 cos (wt + 263"). 

0 I I I I I I 1  I I I I I I 1  I 
-5" Water surface 

- 2  s 
5 
% 
I2 4 -  Unable to read -1" +- 24" 

- 
Bottom of tank 

16 14 12 10 8 6 4 2 
Grid station (ft.) 

FIQURE 11. Tail movements of a porpoise in cruising. The angles with arrows are the 
incidence angles of the tail relative to the path of tail-base measured by Lang & Daybell 
(1963) ; the angles in parentheses are the present theoretical prediction at  the corresponding 
positions. (Experimental data - -, courtesy of Dr T. G .  Lang.) 

6. I I 1 1 I I I I I 1 I I I I I 

The slope of the path traversed by the tail base was observed, quite approxi- 
mately, as dyldx = 0.55 sin wt.  Hence, the tail angles of attack relative to the 
path traversed by the tail base is 

(65 )  

The angles atail predicted by (65) are shown in figure 1 1  within parentheses 
directly below the experimental data of Lang. This comparison, however, should 
be properly qualified, since the application of the two-dimensional theory tends 
to overestimate the efficiency, determination of the effective mean chord is 
crude, and the accuracy of the measured atail was claimed to be somewhat 
uncertain. These rather obscure circumstances notwithstanding, it is still of 
significance to observe that the general trend of the predicted atail is in fair 
accordance with the experimental measurements. 

In terms of Lighthill's form (56) of the lateral motion, the location of the 
pitch-axis corresponding to the 2, and clp given by (64) assumes the value, by 
(57h 

atail = dy /dx  - 2h/ax 2: 0.55 sin wt - 0.862 sin (wt - 7"). 

b/Z = 9 (sin 7")/(0*104) = 0-585, (66) 

and the corresponding feathering parameter is, by (60), 

6 = (0.208/0.228) (see 7') = 0.92. 
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The above value of b/l  locates the pitch axis at +( 1 + 0.585) = 0.793-chord 
point from the leading edge, which is well in the favourable range predicted by 
Lighthill (1970, see particularly his figure 4). The value of feathering parameter 
0 = 0.92 is somewhat higher than the range 0-6 to 0.8 discussed by Lighthill, 
but it is in the right direction for higher efficiencies. Finally, an interpolation 
check with figures 8-10 shows that the observed reduced frequency cr = 0.228 
is somewhat greater than the urn (which is about 0.14 for the cT,o at hand), the 
leading-edge suction at this u is, nevertheless, still reasonably small, 

In  conclusion, the following comments are perhaps in order about the main 
features of the tail movement. (i) The estimated reduced frequency u = 0.228 
is large compared with uc = 0.01, but lies well in the range in which the leading- 
edge suction is not large. (ii) The loading parameter cT,o ( =  1.6 x as 
estimated) turns out to be very small, mainly owing to the large amplitude of 
heaving. (iii) The phase difference a, = 263" between the pitching (about the 
mid-chord) and heaving modes falls in the range of u where a, is nearly sta- 
tionary, and is 'safely' away from the region of rapid changes of ap. (iv) With 
pitching kept only at  a rather small amplitude (2, = 0.1 1 in this case) but with 
the correct phase ap, impressively high efficiency (7 N 0.99) can be achieved. 
(v) When the heaving is forcibly made to lead the pitching by 90" in phase, the 
pitch axis is at about 0-8-chord point, and the feathering (0 = 0-92) is nearly 
accurate. It seems quite conclusive that (i) is the primary condition for selecting 
the frequency u in practice. 

5. Movements of bird's wing in flapping flight 
The present two-dimensional theory can also be used to discuss qualitatively 

the optimal movement of a bird's wing in flapping flight as most species of 
migrating birds have wings of high aspect-ratio, and there must be a considerable 
saving of energy with optimum wing movement;. We shall again adopt the strip 
theory to give a first-order estimate, leaving the effect of finite span as a further 
refinement. A somewhat superficial difference between fish propulsion and bird 
flight arises from the need in the latter case of adding to the oscillatory motion 
the constant angle of attack required for supporting the body weight in air. 
But this steady component can be accounted for separately; it  does not correlate 
with the oscillatory component in the balance of mean energy. 

Take the z-axis to lie along the mean position of the wing span, with the wing 
stretched from x = - b to b.  The wing motion is assumed to have primarily a 
heaving and a pitching mode, so that, for a wing strip at  station z ,  the up-and- 
down flapping displacement in the y-direction can be written 

where S denotes the plane form of the wing, and the amplitude functions &'s 
generally depend on z, they being real and even functions of z for symmetrical 
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motions. Ordinarily, bending of the wing is relatively small except possibly 
near the tip. To fix our ideas, we assume 

t o ( 4  = co(z--z,) (0 < 2 < b ) ,  (69) 

so that (coz,) gives the amplitude of the vertical displacement of body centroid, 
which is probably quite small in general. The z-dependence of t1 and t2 can then 
be discussed qualitatively based on the argument of optimum efficiency. 

Suppose for simplicity that the chord is nearly constant along the span, 
except in the vicinity of the wing tip, so that the reduced frequency IT referred 
to the local half-chord is almost uniform. To simplify the picture, we further 
assume that the spanwise distribution of the thrust  coefficient C, is approxi- 
mately constant, and fixed as required for overcoming the viscous drag. 
According to the present optimum solution, high efficiencies very close to unity 
can be achieved if IT is sufficiently greater than IT,, and if the local cT, = C,, o / [ f j  
is sufficiently small, a condition which can be satisfied by making the amplitude 
to of flapping large. This high efficiency 7 implies that C, will be nearly equal to 
C,  (since 1 - CT/Cp = 1 - 7 < l ) ,  and hence also will be almost uniformly 
distributed along the span. However, since the flapping amplitude Eo(z) grows 
monotonically outwards from z = zc, we have 

so that cT,o decreases rapidly towards the wing tip. Figure 6 then indicates 
that the amplitude ratio Z p  = ([:+[;)*/to should increase slightly with z, 
implying that (t: + ti)* should increase at  least at  the same rate as to towards 
the wing tip. Furthermore, figure 7 indicates that the phase advance angle olP 

of pitching should also increase with decreasing cT,o as z moves towards the 
wing tip. In this range of CT, up is somewhat smaller than 270'. The general 
picture is then roughly as follows: As the wing flaps up and down, the pitching 
amplitude increases with the distance outward from the body, reaching a nearly 
horizontal position at the top and bottom of each stroke. Such a wing movement, 
according to this simple strip-theory argument, is the most efficient, and leaves 
behind the least possible vorticity in overcoming a given frictional drag. This 
crude picture may be further refined by employing a more accurate lifting-line 
or lifting-surface theory, and by including physiological considerations about 
limitations of physical structure, muscuhr power, metabolic rate and other 
factors. Such a broad study is, however, out of the scope of present considerations. 

6. The general optimum shape problem 
As soon as the shape function h(x,t) of a flexible plate is allowed to  have 

a higher number of possible modes, with more Fourier coefficients Po, PI, Pz,. . . , 
plv(2 < N < co) admitted to h (see ( a ) ) ,  the optimum shape problem immediately 
becomes more involved. To begin with, we note that the degree of complexity 
of the analysis depends somewhat on the primary, but crucial, step of choosing 
the independent variable between h and P. If h is taken as the independent 
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function, having the Fourier expansion ( 2 ) ,  the Fourier coefficients of V (see ( 4 ) )  
can be expressed in terms of the Pn’s as 

4, 

b n / U = j c r B n + 2  x (2s+n+1)/3,,+,+, (n=  0,1 ,2 ,  ...). (70 )  
s=o 

The analysis subsequent to  this approach can be developed along a line very 
much similar to the previous case of two-term expansion discussed in $ 3 ,  the 
major step being again the reduction of the singular quadratic form C, to a 
non-singular one of a lower order. It turns out that the first non-singular reduced 
quadratic form of C, is always of order 2 regardless of the value N ( > 2) to 
begin with. This is not surprising, since CE depends on only the first two Fourier 
coefficients b,, b, of V .  This property of CE also explains the advantages of taking 
I‘ as the independent function. 

It is convenient first to decompose V as 

V ( x ,  t )  exp ( - jw t ) /U  = (c, + j c , )  cos 8 + V’(x) (x = COB O), ( 7 1 4  

(71 b)  
00 

V, (x) = C, (i - cos 0) + x (cZn-, +jc,,) cos no, 
n = 2  

in which the c,’s are all real, and the coefficient of the constant term is taken to 
be purely real as a reference phase. By comparison with ( 4 ) ,  

b,lU = c,, b,lU = (c l -co )+ jc2 ,  bJU = czn-,+jcZn ( n  = 2 , 3 ,  ...), ( 7 2 )  

in which the time factors exp(jwt) of the bn’s are omitted as understood. The 
above representation of V is complete, and is so decomposed that V, (x) is ortho- 
gonal to (1 +x), i.e. by (12 ) ,  

whence 

(v , . , l+  cos 8) = 0,  

( V ,  1 + cos 8) = b, + b, = Uexp ( j w t )  (cl +jc,). 

(73 )  

(74 )  

The plate movement h(x, t )  corresponding to the above I‘ can be determined 
by integration of (3), giving 

( - 1  < x < I ) ,  (75 )  

where (5, +j&) is a constant of integration, which becomes known once h( 0, t )  
is prescribed. Upon substituting (71) in (75 ) ,  

h(x, t )  exp ( -jut) = ‘9 ( 1  -jux - exp ( -jcrx)j + h, (x) + +(t5+jt6)exp ( -jcrx), 

(76a) 

( 7 6 b )  

Again we note that h can admit a progressing wave exp [ j ( w t  - crx)] without 
affecting V .  

h ,  (x) = exp ( -?Jx)/O exp (jrt) I‘ ( 6 )  d t .  
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The Fourier coefficients Pn's of h can be derived from (76) by making use of 
the Fourier-Bessel expansion (Watson 1944, p. 22) 

00 

exp( kjvcosO) = J , ( c T ) + ~  ( ~ ~ ) % ~ , ( c T ) c o s ~ ~ .  (77)  
n = l  

The first two coefficients are determined as 

Poexp ( - j w t )  = 2(c1+jc2) 1 - J 0 ( v ) + ( 5 1 + j 5 2 ) +  v2 ( f ; 5 + j 5 6 ) J 0 ( g ) ,  (78a) 

2 
Piexp (-jut) = * [1-;Ji(g)] +(53+j5~)-j(5s+j56)J1(v), (78b) 

.I= 
2 2 "  

n o  E~ -+z2 = - Jn  h, (.) do, g3 + j g  = -Jo h, (2) cos me.  

where Pz2 = (1-9)  [ :  l--J1(0-) 1 :  +-99[l-Jo(v)], (sob) 

(78c) 

Upon substituting (74) and (78) into (6)-(7), we obtain 

CE = B(a)(c?+cg), (79) 
cp = F 2 2  (cf + 4) + d l C 1  + 4 c 2 ,  (sea) 

61 +jA2 = (51 +jt -2)  (g +5m - (C3 [g -j(l - 5 9 1  
+ ( 5 5 + j & )  [($+jF) J O ( v )  + (l  -$+jS) Jl(a)]. (80c) 

The present result (79)-(80) is now seen to be analogous to the previous case of 
rigid plate, (35)-(37). Proceeding in a similar way, we extremize CE, with again 
C, = CT,o fixed (see (lo)),  by varying .first c1 and c2. The variational solution, 
conta.ining v, CT,o as well as (&, . . . , 5 6 )  as a family of parameters, is of the form, 

c1 = hAl, c2 = Ad2, (81) 

CE = B(hA)2, cp = (J?22h2 + gh) A2, d2 = Id1 +jA$2I2. (821 

p2',,h2+g.h = CT,O, (83 a )  

h being a Lagrange multiplier. By substituting (81) in (79)-(SO) 

Application of condition ( 10) now yields 

where '22 = F 2 2 - B ,  OT,O = cT,0/(A)2. (83 b), 

In  this case, h again has two solutions: 

In  comparing this result with (42) of the rigid plate case, we note that the 
general feature of p22(v) is quite similar to TZ2, namely, p22 vanishes at g = 0 
and v = 5, = 2.51, and 

p22(a) 2 0 according as CT ~7~ = 2-51. (85) 
The derivative dp2z/dg is found to be appreciably smaller than dTz21da, as is 
shown in figure 1. From this property it follows that, if the parameter CT,, of 
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this solution assumes the same value as cT,o in the rigid plate case, the rate of 
increase d x l d a  is slower than dRlda, and hence the critical reduced frequency 
5, < a,, where &5,, CT,,) = - 1, and a, is given by (43). Consequently, A, and 
A, will be real if A 2 - 1, or 

2 5c(CT,o) where A(aC, CT,,) = - 1. (86) 

Within this range of a, A,  corresponds to the maximum efficiency, 

whereas A, yields the minimum efficiency 

The present optimum solution, being not yet subjected to the recoil conditions, 
contains the parameters a, CT,o, el, $,, . . . (6. When these eight parameters are pre- 
scribed, &isgivenby (84), c,andc,by (81), andtheoptimumprofile hisfurnished 
by (76), except the component h,(x) is determinate only up to the fist two 
Fourier coefficients (see (78 c)). To this end, we note that the Fourier coefficients 
of h, (z) higher than the second have no influence upon the optimum efficiency. 
Furthermore, it is of significance to observe that the parameters El, c,, ... $6 

appear in the solution of ymax only through the quantity A2, which is a quadratic 
form of El, c,, . . . e6 with frequency-dependent coefficients. Consequently, every 
point (El, E,,  , . . $6) on the quadrics 6, = const. will yield the same ymax. This 
result shows that the optimum solution, as presently posed, can be determined 
only to a certain degree, but not to the extent to provide a unique h(z,t). The 
reason for this, as mentioned earlier, is because there appears in this variational 
problem only a few scalar products involving h and V .  

Judging from the known properties of the rigid plate solution, which are 
quite similar to the present general case, it can be inferred that for fixed a and 
CT,o, qmax will increase with decreasing A, or with increasing 6, (see (84)). 
Furthermore, ymax very close to unity can be attained when CT,,/(B)2 < 1. 

The actual numerical work can be facilitated by fist expressing the quadratic 
form 22 in the canonical form. A possible choice of the new variables is 

e l =  ' 6 1 - ( 1 ( c 3 , * * * 6 6 ) ?  c 2 =  6 2 - ( 2 ( c 3 , - * * 6 6 ) ,  (89a) 
where [, and (, are the values of el and E2, respectively, which will make 
6, +ja2 and hence also vanish for arbitrary (& ... &). Then (80c)  becomes 

4 + j 6 2  = (B +jF) (el +jC,), (89b) 

hence A,= (P+B2)(c:+c;), (89c) 
this being in the canonical form. Clearly, ymax depends on two parameters 
[CT, CT,o/(cZ, + 691, c1 and c, depend on four parameters (a, CT,,, el, C2), whilst Po 
and PI depend on (a, CT,o, el, c,, c3, g4, .. . c 6 ) .  The above canonical form is not 
unique. The expression for 6, +ja, in (80 c) indicates several other combinations 
of new variables. For instance, as another set, one may take 

& = 6 3 - & ( E l , E 2 , g 5 , g 6 ) ,  c 4  = c 4 - ~ 4 ( ~ 1 , ~ 2 , < 5 , h ) ,  (goal 



and the corresponding form of A2 is again canonical. 
For each of these canonical forms of A2, the calculation of the optimum 

ymax will be entirely parallel to the special case of the rigid plate, although 
there remain additional free parameters in the determination of the optimum 
shape. It may be expectedthat due to the additional degrees of freedom admitted 
to h(x, t )  for this general case, vmax will be further improved from the rigid plate 
value at  fixed CT and CT, o / [ &  to being the heaving amplitude. 

Finally, suppose the body recoil conditions (15)-( 16) are also to be satisfied, 
then these two conditions will give four scalar equations relating four more 
parameters of V ,  say c3, c4, c5, c6, to the remaining unknown coefficients. This 
shows that h(x, t )  as given by (76) can be determined to a higher degree, the lack 
of complete determinateness of the optimum shape remains, nevertheless, an 
intrinsic feature of the problem. 

I am deeply indebted to Professor M. J. Lighthill for interesting and stimu- 
lating discussions, and particularly for calling my attention to the significance 
of leading-edge suction in this problem. My remarks in this paper would have 
been less complete had I not had the privilege of knowing his important con- 
tribution (1970) prior to its publication. I am also grateful to Dr T. G .  Lang for 
discussion on his experiments, and to Professors C. R. De Prima and Duen-pao 
Wang for their interest in the general problem presented in $ 6 .  Assistance 
provided by Dr Arthur Whitney and Mr Allen Chwang in numerical studies is 
greatly appreciated. This work was partially sponsored by the National Science 
Foundation, under Grant GK 10216, and by the Office of Naval Research, under 
Contract N00014-67-A0094-0012. 
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